Reduction of tyre abrasion and CO₂ through the use of geotextiles

Calculation Example

The Surface Sealing of Landfills

The transport of material for a fictitious landfill sealing project is compared. Comparisons are made between a geotextile bentonite mat liner project and a clay liner project.

4,500 m² Landfill area

The construction methods

in comparison

4,500 m² of bentonite mats

1 trip

semi-trailer truck 4-axle **25,000 kg** capacity/trip

2,250 m³ clay mineral

corresponds to waterproofing

203 trips

Payload dump truck 4-axle **20,000 kg** capacity/trip

557 kg CO₂

1 truck, transport distance 600 km CO₂ emissions per km 0.928 kg/km

9,391 kg CO₂

203 truck, transport distance **50 km** CO₂ emissions per km **0.928 kg/km**



Result:

A comparison of the two solutions clearly shows that a landfill using geotextiles produces up to 96% less microplastic from tyre abrasion (under the parameters listed above) than the expansion variant with a clay liner.

In addition, 94% more CO₂ is produced during the transport of the clay mineral. Added to this, is the additional CO₂ caused by the use of machinery during paving, which is considerably lower with the geosynthetic option. In addition, the construction costs are usually lower when using a geotextile solution.

