Mono- und biaxiale Spannungszustände in geokunststoffbewehrten Erdbauwerken und ihre Bemessungsrelevanz

In früheren Veröffentlichungen wurde berichtet, dass sich bestimmte Geokunststoffe infolge eines biaxialen Spannungszustands, sowohl kurz- als auch langzeitig, deutlich dehnstärker verhalten als bei einem rein monoaxialen Spannungszustand. Im Hinblick auf die Fragestellung, welche Konsequenzen sich aus der Übertragung eines solchen Materialverhaltens für die Bemessung von geokunststoffbewehrten Erdkörpern ergeben können, werden im Rahmen des vorliegenden Beitrags typische geokunststoffbewehrte Konstruktionen hinsichtlich ihrer Spannungszustände analysiert. Hierzu werden sowohl generelle Überlegungen als auch Ergebnisse aus umfangreichen numerischen Studien, Labor- und Feldversuchen dargestellt und diskutiert.

Die durchgeführten Untersuchungen führen zu der Erkenntnis, dass rein biaxiale Spannungszustände, wie sie im Labor untersucht wurden, in geokunststoffbewehrten Erdbauwerken selbst unter idealen Randbedingungen nur sehr lokal begrenzt auftreten. Sie besitzen somit keine Relevanz für die Bemessung von geokunststoffbewehrten Erdbauwerken.

Uni- and bi-axial loading conditions in geosynthetic reinforced soil structures and their design relevance. Recent publications have focussed on the improved performance of certain geosynthetics under short- and long-term biaxial loading conditions. It was reported that the geosynthetic reinforcements act as a result of biaxial loading clearly stiffer as under uni-axial loading. In the course of this publication the relevance of such material performance in the design of typical geosynthetic reinforced soil structures will be evaluated. Therefore the loading conditions of the reinforcements will be analysed. The evaluation will not only be based on the principles of geotechnical engineering but also on extensive numerical analyses as well as laboratory- and field-tests.

The analyses showed, that real biaxial loading conditions, as adapted for the laboratory tests, are to be observed only very limited and locally even assuming ideal boundary conditions. Therefore bi-axial loading conditions do not have any design relevance.

1 Einleitung

Im Hinblick auf die Möglichkeiten einer generellen Übertragbarkeit dieser Vorgehensweise, aber auch als Beitrag zum besseren Verständnis der komplexen Spannungszustände geokunststoffbewehrter Erdkörper wurden diese genauer analysiert.

2 Spannungszustände der Geokunststoffbewehrungen in Abhängigkeit von Anwendungsgebiet

2.1 Antigleitbewehrung bzw. Bewehrung bösungsparalleler Gleitflächen

Bei der Überdeckung von Dichtungselementen in Böschungsbereichen, z. B. im Depotbau, werden Geokunststoffbewehrungen eingesetzt, um ein bösungsparalleles Abgleiten der Bodenüberdeckung zu verhindern (Bild 1).

Häufig wird in diesem Zusammenhang von Antigleitbewehrungen gesprochen. Über Reibung und Verzahnung „hält“ sich die Überdeckung an der Bewehrung auf und wird so am Abrutschen gehindert.

Aufgrund der Gravitationskraft und der daraus resultierenden Bewegungswiderstände der Bodenüberdeckung erfährt die Bewehrung in diesem Anwendungsgebiet schließlich eine Beanspruchung in Richtung der Böschungsfläche, jedoch keine Beanspruchung senkrecht zur Falllinie. Eine entsprechende Verlegung der Bewehrung vorausgesetzt, beträgt das Belastungsverhältnis bezo-

2.3 Basisbewehrung bei Dammgründungen auf weichem Untergrund

dererum selbst.

![Bild 3. Basisbewehrung unter einem Damm, möglicher Geländedruck in rot](image3)

Aufgrund der beschriebenen Beanspruchungen werden in den oben genannten Anwendungsgebieten in der Praxis hauptsächlich anisotrope (monoxiale) Bewehrungsprodukte mit ausgeprägter Lastabtragungsgliederung eingesetzt.

2.4 Tragglattbewehrung, Bewehrung über vertikalen Traggliedern, Erdfallüberbrückung

Neben den genannten Anwendungsgebieten hat sich der Einsatz von Geokunststoffen auch in weiteren geotechni-
Quelle: Bautechnik 85
12/2008

2.5 Untersuchung der Beanspruchung bzw. der Belastungsverhältnisse komplexer Anwendungsgebiete mittels numerischer Simulationen

Simulation einer Erdfallsicherung

Untersucht wurde ein kreisrunder Erdfall mit einem Durchmesser von \(D = 2.0 \, \text{m} \) in einem Modell mit den Abmessungen 10 m x 10 m x 1 m. Die Modellgrenzen wurden so gewählt, dass sich Einflüsse von den Rändern nicht auf die Ergebnisse im Erdfallbereich auswirken. Der Untergrund wurde als steifes, kohäsiives Material modelliert, so dass sich ein stabiler zylinderförmiger Erdfall einstellen konnte. Eine Membran mit gitterartigem, orthotropem Tragverhalten simuliert die Bewehrung über dem Erdfall. Der Membran wurde in zwei orthogonal zueinander stehenden Richtungen gleiche Dehnsteifigkeiten zugeordnet, im Folgenden Richtungen 1 und 2 genannt. Die Belastung aus Überdeckungsboden und Auflast wurde als gleichmäßig verteilte schlaffe Last oder als Kombination aus Bodenmaterial mit dem Stoßgesetz nach Mohr-Coloumb und der gleichmäßig verteilten schlaffen Last simuliert. Um mögliche Einflüsse der Schubmodule, Geotextilien, Dehnsteifigkeiten, Modellierung der Belastung sowie der Kontaktzone zwischen Bewehrung und Boden bzw. Auflast festzustellen, wurden ausführliche Parameterstudien durchgeführt.

Erwartungsgemäß war ein Einfluss auf die Absolutgrößen festzustellen, jedoch bleibt die Kernaussage dieser Untersuchungen bzgl. des Belastungsverhältnisses davon unbeeinflusst. Für die Auswertung der Berechnungs-ergebnisse wurde das Verhältnis der Belastung in den Richtungen 1 und 2 entlang der Achse in Richtung 1 vom Erdfallmittelpunkt bis zum Erdfallrand gebildet (Bilder 4 und 5).

In Bild 5 ist deutlich zu erkennen, dass im Erdfallmittelpunkt ein Belastungsverhältnis von 1 : 1, also „rein biaxial“ vorliegt. Bereits bei einer geringen Entfernung vom

Erdfallmittelpunkt zeigt sich jedoch eine kontinuierliche Abnahme des Belastungsverhältnisses, so dass am Erdfallrand bereits ein Belastungsverhältnis von nahezu 1 : 0, also „rein monoaxial“ vorliegt. In [13] werden Ergebnisse einer numerischen Erdfallsimulation vorgestellt, bei der anisotrope Bewehrungsprodukte simuliert wurden. Die Auswertung der Ergebnisse zeigt, dass sich die maximalen Belastungsgrade der Bewehrung in Längs- (41 %) und Querrichtung (52 %) trotz geometrischer Symmetrie deutlich unterscheiden. Dies bedeutet, dass bei Verwendung von anisotropen Bewehrungs-
produkten nicht einmal im Erdfallmittelpunkt ein 1 : 1-Belastungsverhältnis der Bewehrung vorliegt.

Simulation einer Tragschichtbewehrung
Mit dem Programmsystem FB3 [14] wurden in einer weiter- ren numerischen Studie die Spannungszustände in einer Tragschichtbewehrung unter einer starren, runden Platte untersucht. In dem gewählten Modell sollte in diesem Fall über einer verhältnismäßig weichen Bodenschicht eine Geogitterbewehrung und eine 30 cm dicke Tragschicht abgebildet werden. Als Belastung wurde eine Lastplatte mit einem Durchmesser von \(d = 30 \text{ cm} \) und einer Belas- tung von \(p = 500 \text{ kN/m}^2 \) modelliert. Die Abbildung des Geogitters erfolgte in Form von Stabelementen, wobei die Dehnsteifigkeit der Bewehrung in beiden zueinander senk- rechten Koordinatenrichtungen gleich groß war.

Simulation bewehrter Grundpfolster über vertikalen Traggliedern

Bild 6. Belastungsverhältnis \(\sigma_y/\sigma_x \) über der Achse 1

<table>
<thead>
<tr>
<th>Abstand von Symmetrieachse der Lastplatte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsverhältnis (\sigma_y/\sigma_x)</td>
</tr>
</tbody>
</table>

Bild 6 zeigt die Ergebnisse der Untersuchungen in Form eines Zugkraft-Dehnungsdiagramms. Aufgetragen sind die Belastungsgrade eines Geogitters über der Dehnung, je- weils für einen monoxialen Kurzzeitzugversuch sowie die Isochronen für 120 Jahre, als Ergebnis monoxialer (Belastungsverhältnis \(1 : 0 \)) und rein biaxialer Kriechver- suchs (Belastungsverhältnis \(1 : 1 \)). Die Aussage des Dia- grammes ist, dass sich das untersuchte Geogitter unter einer biaxialen Belastung im Verhältnis \(1 : 1 \) dehntsteller verhält als unter einer monoxialen Belastung, also einem Ver- hältnis von \(1 : 0 \). Darüber hinaus kann eine höhere Lang- zeitstandfestigkeit abgeleitet werden. Um die praktische Bedeutung dieser Ergebnisse für die Ermittlung von Bau- teilwiderständen, z. B. der Bemessungstfestigkeit einer Geo- kunstoffbewehrung, erkennen zu können, wurden die Isochronenkurven in [2] vereinfachend für die Ermittlung des Abminderungsfaktors \(A_1 \) (Zielstandbruch) herangezo- gen. Für eine Belastungsdauer von 120 Jahren ergeben sich die in Tabelle 1 angegebenen Faktoren.

Für eine Bemessung würde dies bedeuten, dass bei einem biaxialen Belastungsverhältnis von \(1 : 1 \) und einer Belastungsdauer von 120 Jahren eine um 15 % höhere Bemessungsfestigkeit angesetzt werden könnte als für einen monoxialen \(1 : 0 \) Belastungszustand. Die Berücksichti-
4 Ausführungsspektre, Labor- und Feldversuche

Neben den oben aufgeführten, rein theoretischen Überlegungen gibt es auch baupraktische Aspekte, die eine Bückichtigung eines veränderten biaxialen Materialverhaltens für geotechnische Anwendungen in Frage stellen.

4.1 Überlappungen und Verankerungen

Bild 8. Überlappungsbereich im Berstoffeinschub
Fig. 8. Simulation of overlap using burst strength equipment
Insbesondere bei Anwendungen mit verhältnismäßig ho-
len erforderlichen Zugkräften (z. B. Erdmaulsicherungen),
kann die Kraftübertragung i. Allg. nicht mehr durch kon-
struktive Verbindungselemente wie Steckstäbe, Nähte o. ä.
sichergestellt werden. Die Kraftübertragung kann hier nur
durch einen von der Auflast, den Bodenparametern und
den Verbund eigenschaften der Bewehrung abhängigem
Reibungsverband erreicht werden. In der Praxis können
durchaus Überreibungslängen von mehr als der drei-

durch vierfachen Rollenbreite erreicht werden. Wie bereits am
Beispiel des Berstversuchs zu erkennen war, sind aber ge-
rade in diesen Bereichen äußerst komplexe Spannungs-/
Verformungsverhältnisse zu erwarten. Die Annahme ideal
biaxialer 1:1 Belastungs- bzw. Verformungsverhältnisse ist
deshalb hier selbst bei völlig axialsymmetrischer Einwir-

kung zutreffend.

4.2 Geometrische Randbedingungen

In den vorgestellten numerischen Studien wurden ideale
Geometrien (kreisrund Erdfüll und gleichmäßig, axial-
symmetrisch verteilte Belastung) vorausgesetzt und den-
noch kein durchgehendes 1:1-Belastungsverhältnis fest-
dargestellt. Derartige Randbedingungen sind in der Natur nur
noch selten zu erwarten. Erdfallrichter können sich
z. B. im Randbereich auflockern, in ovaler oder län-

dlicher Form auftreten, und Belastungen können sehr ungleich-
mäßig über der Bewehrungsebene verteilt sein.

4.3 Beschädigungen

Alle in [1], [2] beschriebenen Prüfungen zum mechanischen
Verhalten von Geogittern unter biaxialer Belastung erfolgten
ausschließlich an völlig unbeschädigtem Probenmaterial.
Sowohl Baustellenerfahrungen als auch Laborversuche zei-
gen jedoch, dass Beschädigungen am Geogitter als Folge
Des Bodeneinbaus und der Bodenverdichtung niemals völ-
lig ausgeschlossen werden können. Bei der gängigen Vor-
gehensweise zur Bestimmung der Bemessungsfestigkeit einer
Bewehrung wird dies durch produktspezifische und bodenabhängige
Abminderungsfaktoren berücksichtigt. Fraglich ist in
diesem Zusammenhang, welchen Einfluss eine potentielle Be-

schädigung, z. B. die Lösung eines Kreuzungspunktes, auf
resultiert biaxialer 1:1-Zugversuche haben könnte.

5 Zusammenfassung und Ausblick

Der vorliegende Beitrag beschäftigt sich mit der Analyse
der auftretenden Spannungszustände in geokunststoff-
bewehrten Erdbauwerken und deren Bedeutung für die
Bemessung und Berechnung.

Mit Hilfe verschiedener numerischer Studien und auf
Grundlage genereller Überlegungen wurde ermittelt, dass
ein rein biaxiales 1:1-Belastungsverhältnis nur bei einzel-
nen Anwendungen stark lokal konzentriert so wie z. T. zeit-
l ich begrenzt auftreten. In den gängigen Anwendungsgebieten
liegen überwiegend ein monoaxialer Spannungszustand vor.

Eine zuverlässige Beschreibung des Belastungszustand-

isses ist in allen Fällen schwierig und keinesfalls konstant.

Der Übergang zwischen einzelnen Spannungszuständen ist
kontinuierlich, so dass ein repräsentatives, bemesungsrelev-
tsches Belastungsverhältnis nicht angegeben werden kann.

Dazu kommen wichtige bautechnische Aspekte, z. B. die
Unmöglichkeit, eine durchgehende, homogene Bewehrung
zuarbeiten.

Soll das vom Spannungszustand abhängige Material-
verhalten bei einer Bemessung berücksichtigt werden,
muss deshalb äußerst vorsichtig geprüft werden, inwiefern
einen potentiellen Biaxialeffekt der geotechnischen An-
wendungen tatsächlich übertragen werden kann. Beson-
ders riskant scheint ein genereller Ansatz eines Biaxial-
effekts auch deshalb, weil die in 1:1-Zugversuchen abge-
leitete Belastbarkeit eine spürbare Verbesserung des Trag-
verhaltens bedeuten würde, eine Feinheitensteuerung jedoch
sicherheitsrelevanten Folgen nach sich ziehen kann. Auch
bleibt fraglich, ob die in jüngster Zeit vielfach zitierten
Tragkraftverfahren geokunststoffbewehrter Konstruktionen
tatsächlich maßgeblich auf den z. B. in [2] zitierten Biaxial-
effekt zurückzuführen und aktuelle Forschungsaktivitäten
in dieser Richtung wirklich zielführend sind.

Motivation des vorliegenden Beitrages ist, die mit-
unter auch in Fachkreisen entstandene Unsicherheit in
Bezug auf das biaxiale Tragverhalten von geokunststoff-
bewehrten Erdkörpern anzuräumen und praxisbezogene
Transparenz zu schaffen.

Literatur

kunststoffbewehrung zur Überbrückung von Erdfüll im
Hilfee von drei dimensionalen, geometrisch nichtlinearen FE-
zum Vergleich des Tragverhaltens zweiaxialer und mehraxi-
l rer Geokunststoffbewehrungen, Abschlussbericht 2007, WBI
Aachen (unveröffentlicht).

Autoren dieses Beitrages:
Dipl.-Ing. Oliver Detert, Dipl.- Ing. Hartmut Häng, HUESKER Synthetic

Bautechnik 85 (2008), Heft 12: 843